MedCapsules Forum
Individual and interactive effects of apigenin analogs on G2/M cell-cycle arrest in h - Printable Version

+- MedCapsules Forum (http://medcapsules.com/forum)
+-- Forum: Main Lobby (/forumdisplay.php?fid=1)
+--- Forum: Holistic Medical Topics (/forumdisplay.php?fid=18)
+---- Forum: Cancer (/forumdisplay.php?fid=12)
+----- Forum: Cancer Research (/forumdisplay.php?fid=132)
+------ Forum: Colon Cancer (/forumdisplay.php?fid=149)
+------ Thread: Individual and interactive effects of apigenin analogs on G2/M cell-cycle arrest in h (/showthread.php?tid=3339)



Individual and interactive effects of apigenin analogs on G2/M cell-cycle arrest in h - James - 08-06-2012 08:47 AM

Nutr Cancer. 2004;48(1):106-14.

Individual and interactive effects of apigenin analogs on G2/M cell-cycle arrest in human colon carcinoma cell lines.

Wang W, VanAlstyne PC, Irons KA, Chen S, Stewart JW, Birt DF.

Source

Department of Food Science and Human Nutrition, Iowa State University, Ames 50011, USA.

Abstract

Apigenin has been previously shown to induce G2/M cell-cycle arrest in human colon cancer cell lines. The present study assessed the individual and interactive influence of seven apigenin analogs on cell cycle, cell number, and cell viability in human SW480 and Caco-2 colonic carcinoma cells. Cellular concentration of selected apigenin analogs was further assessed by high-performance liquid chromatography to assess cellular availability. The apigenin analogs studied were acacetin, chrysin, kampherol, luteolin, myricetin, naringenin, and quercetin. DNA flow cytometric analysis indicated that treatment with either chrysin or acacetin at 0 to 80 microM for 48 h resulted in cell-cycle arrest at the G2/M phase in a dose-dependent manner in the SW480 cells but not in the Caco-2 cells. The percentage of SW480 cells at G2/M also increased when cells were treated with kampherol, luteolin, or quercetin between 5 and 30 microM, but the percentage of cells in G2/M decreased at doses greater than 40 microM. Cell number was significantly decreased in a time- and dose-dependent manner following the treatments with each analog except for naringenin and myricetin. The interactive effects of these analogs with apigenin were further assessed by combining each analog at doses from 0 to 80 microM with apigenin at 20 microM, a dose at which apigenin was found to double the proportion of SW480 cells in G2/M. When either acacetin, chrysin, luteolin, kampherol, or quercetin at doses between 5 and 30 microM were combined with apigenin at 20 microM, there was an increase of 22% in the proportion of G2/M cells over that observed with 20 microM apigenin alone (P < 0.05). At doses higher than 40 microM, however, the interaction became antagonistic, and the proportion of cells in G2/M decreased below that observed with apigenin alone. Cell viability, as assessed by Trypan blue exclusion assay, significantly decreased by treatments with high doses of each agent or each agent combined with apigenin. Cellular concentration of apigenin, chrysin, or naringenin in SW480 cells significantly increased at doses of 40 microM or greater, but it was not correlated with their impact on G2/M cell-cycle arrest. The induction of cell-cycle arrest by five of seven tested apigenin analogs and the additive induction by the combination of flavonoids at low doses suggest that apigenin-related flavonoids may cooperatively protect against colorectal cancer through conjoint blocking of cell-cycle progression.

Copyright 2004 Lawrence Erlbaum Associates, Inc.


Cell-cycle arrest at G2/M and growth inhibition by apigenin in human colon carcinoma - James - 08-06-2012 08:49 AM

Mol Carcinog. 2000 Jun;28(2):102-10.

Cell-cycle arrest at G2/M and growth inhibition by apigenin in human colon carcinoma cell lines.

Wang W, Heideman L, Chung CS, Pelling JC, Koehler KJ, Birt DF.

Source

Department of Food Science and Human Nutrition, Iowa State University, Ames, Iowa 50011-1061, USA.

Abstract

Apigenin, a common dietary flavonoid, has been shown to induce cell cycle arrest in both epidermal and fibroblast cells and inhibit skin tumorigenesis in murine models. The present study assessed the influence of apigenin on cell growth and the cell cycle in the human colon carcinoma cell lines SW480, HT-29, and Caco-2. Treatment of each cell line with apigenin (0-80 microM) resulted in a dose-dependent reduction in both cell number and cellular protein content, compared with untreated control cultures. DNA flow cytometric analysis indicated that treatment with apigenin resulted in G2/M arrest in all three cell lines in a time- and dose-dependent manner. Apigenin treatment (80 microM) for 48 h produced maximum G2/M arrest of 64%, 42%, and 26% in SW480 cells, HT-29 cells, and Caco-2 cells, respectively, in comparison with control cells (15%). The proportion of S-phase cells was not altered by apigenin treatment in each of the three cell lines. The G2/M arrest was reversible after 48 h of apigenin treatment in the most sensitive cell line SW480. The degree of G2/M arrest by apigenin was inversely correlated with the corresponding inhibition of cell growth measurements in all three cell lines (r = -0.626 to -0.917, P</=0. 005). Moreover, an immune complex kinase assay demonstrated an inhibition of p34(cdc2) kinase activity, a critical enzyme in G2/M transition, in each cell line after treatment with apigenin (50-80 microM). Western blot analyses indicated that both p34(cdc2) and cyclin B1 proteins were also decreased after apigenin treatment. These results indicate that apigenin inhibits colon carcinoma cell growth by inducing a reversible G2/M arrest and that this arrest is associated, at least in part, with inhibited activity of p34(cdc2) kinase and reduced accumulation of p34(cdc2) and cyclin B1 proteins. Differences in induction of G2/M arrest by apigenin in the three colon carcinoma cell lines suggest that dietary apigenin may be differentially effective against tumors with specific mutational spectra. Mol. Carcinog. 28:102-110, 2000.

Copyright 2000 Wiley-Liss, Inc.